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Abstract. The effect of non-local norm-conserving pseudo-potentials on the static and dynamic properties
of Nan and Lin cluster with n = 6, 8 is investigated in the frame of self-consistent LDA calculations with
spherically averaged ionic density (SAPS model). A comparison with previous calculations which use local
pseudo-potentials as well with uniform averaged non-local pseudo-jellium calculation has been carried out.
A better quantitative agreement with experiments has been found in the calculation of the photoresponse
cross-section with respect to either simple jellium or pseudo-jellium model, even in very small clusters,
where deviations from sphericity are not negligible.

PACS. 36.40.-c Atomic and molecular clusters – 71.15.Hx Pseudopotential method – 31.15.Ew Density-
functional theory

1 Introduction

In the last decade a great deal of work has been devoted
to the calculation of the structural and electronic proper-
ties (collective excitations, optical response, ...) of nano-
clusters at different levels of sophistication. In the case of
simple metal clusters the self-consistent jellium approxi-
mation in the frame of the Local Density Approximation
(LDA) to Density Functional Theory (DFT) has attracted
much interest due to its capability to modelize clusters
even with a large number of atoms, giving a relatively
good agreement with experimental data [1].

In its simplest form [2] the jellium approximation disre-
gards the actual ionic arrangement and treats the nuclear
background of the cluster as a uniformly charged sphere
with a positive charge density:

n(r) = n(r) = n0Θ(Rc − r) (1)

where n0 = (4/3πr3
s)
−1, rs is the bulk Wigner radius, Rc

is the cluster radius defined as Rc = rsN
1/3 and N is the

number of valence electrons in the cluster. Nevertheless,
in order to obtain more quantitative predictions, a better
treatment of the interaction between electrons and ions
seems to be one effective way (another being the improve-
ment of LDA itself) to overcome theoretical versus experi-
mental discrepancies, like, for instance, the under-estimate
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of the red shift in the collective excitation peak (the Mie
resonance) of this model. An important step in this direc-
tion has been obtained with the introduction of the spher-
ical pseudo-jellium model [3], in which electrons and ions
interact via ab initio norm-conserving pseudo-potentials
[4]. These are designed to reproduce not only the cor-
rect valence eigenvalues but also the actual valence wave
functions outside the pseudo-atom core. The main compli-
cation introduced by such potentials in the Kohn-Sham
formalism is their non-locality (or better, their semi-
locality, i.e. radial locality, but angular non-locality),
whose handling increases the computational effort.

Without resorting to very time-consuming fully three-
dimensional calculations to take into account the real
atomic arrangement [5,6], a reasonable improvement over
the simple jellium scheme can be achieved by radially aver-
aging the atomic positions around, for instance, the center
of mass of the cluster: this allows to retain the advantages
of the spherical symmetry, introducing in an approximate
way the geometrical arrangement of the charged nuclei,
which are therefore spread over concentric shells reflecting
the actual local coordination. Since the idea of spherically
averaged pseudo-potentials (SAPS) model is not new [7],
we wish to point out some differences between this work
and previous approaches. The most important one has to
do with the quality of the potentials used. We stress the
fact that up to now mostly semi-empirical, local pseudo-
potentials have been used in SAPS calculations [7–11]. In
this work we report results obtained from ab initio norm-
conserving pseudo-potentials, which incorporate non-local
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effects connected with the core electrons. As pointed out
in references [3,12], this non-locality leads to a renormal-
ization of the electronic mass, which improves the quanti-
tative description of the properties of such systems. Only
recently the non-local effects of norm-conserving pseudo-
potentials in the BHS form [4] have been incorporated
into the SAPS scheme. For instance, in reference [12]
non-locality has been added to the SAPS model to cal-
culate the optical response of Li clusters but with some
additional approximations in the treatment of the nonlo-
cal part of the total potential as well as in the ionic SAPS
distribution. More recently, a similar approach has been
followed in reference [13] for the calculation of the static
properties of endohedral complex Li2@C60 by using the
correct expression for the non-local spherical average but
retaining again the simplifying restriction to the s-wave
component.

Since we want to check the reliability and the limits of
validity of the SAPS scheme once the full nonlocality of
norm conserving pseudopotentials is included, in this work
we present analytic calculations for the complete nonlo-
cal radial average of ionic pseudopotentials, with explicit
inclusion of all the angular components of the BHS
pseudo-potentials and relax any further approximation be-
yond the SAPS prescription. Although the SAPS scheme
is expected to perform better and better for large clusters,
as a case study we apply this formalism to the calculation
of both static and dynamic properties (optical response)
of small alkali clusters and show that indeed the inclu-
sion of p-nonlocality is significant for the smaller clusters.
Moreover we show that, unexpectedly, the SAPS scheme,
with nonlocality included, gives sensible results also for
open shell clusters.

The paper is organized as follows: in Section 2 we
analytically develop the SAPS average on the local and
non-local part of the BHS pseudo-potentials in order to
calculate ground-state energy and dynamic photoresponse
of the clusters. In Section 3 the obtained non-local SAPS
model is applied to small alkali clusters of Na and Li to
test the relevance of the SAPS approximation in situation
which deviate from sphericity and to compare the differ-
ent contribution of non-locality in Li (for which, due to the
absence of p-states in the core, the p-electrons experience
the full non-locality of the ionic potential) with respect to
Na (which is known to be well described already by a lo-
cal approach [8,11]). A comparison with results obtained
in the pseudo-jellium approach are reported in order to
demonstrate the relevance of the ionic contribution to the
photo-response cross-section.

2 The model

In the spirit of the pseudo-potential calculation we sub-
stitute atoms with pseudo-atoms, where only the valence
electrons degrees of freedom are treated explicitly, while
the inner shell electrons are frozen. The pseudo-potentials

used in the present work are in the BHS form [4]:

vPS(r, r′) = vL(r) + vNL(r, r′)

= vBHSloc (r)+
∑
lm

vBHSl (r)
δ(r−r′)

rr′
Ylm(r̂)Y ∗lm(r̂′) (2)

where the non-local (NL) part acts on the wave func-
tions as an integral kernel, i.e.:

vNL(r, r′)ϕj(r) ≡

∫
dr′vNL(r, r′)ϕj(r

′). (3)

The sum in equation (2) is usually restricted up to an
lmax whose contribution is subtracted out becoming local
so that equation (2) now reads:

vPS(r, r′) = vBHScore (r)

+
∑

l<lmax,m

∆vBHSl (r)
δ(r − r′)

rr′
Ylm(r̂)Y ∗lm(r̂′), (4)

with

vBHScore (r) ≡ vBHSloc (r)− vBHSlmax
(r) (5)

and

∆vBHSl (r) ≡ vBHSl (r)− vBHSlmax
(r). (6)

Whereas in references [12,13] the calculation is restricted
to lmax = 1, we will use lmax = 2 for Na and Li, as pre-
scribed by the BHS formulation.

Constructing first the total pseudo-atomic potential of
the cluster (according to the real density n(r) =

∑
I δ(r−

RI), RI labeling the atomic sites), one has:

Vtot(r, r
′) ≡

∫
dR n(R) vPS(r, r′,R)

= V Ltot(r) + V NLtot (r, r′), (7)

where we have defined vPS(r, r′,R) as the potential of a
pseudo-atom located at R. The pseudo-jellium model [3]
prescribes to fold the potential in equation (7) with the
uniform jellium density of equation (1), so we can call
it Uniformly Averaged Pseudo-Jellium (UAPS). One may
go beyond such a simple scheme by taking into account
the ionic arrangement, at least in the approximate way
prescribed by the SAPS scheme. The aim is therefore to
substitute the fully 3D potential with a suitably “aver-
aged” version, which improves the basic jellium approxi-
mation either in its local formulation [2] or in the non-local
one [3], while retaining its one-dimensional computational
simplicity.

2.1 Ground state LDA calculation

The ground state properties of the cluster are calculated
in the LDA approximation using Perdew and Zunger [14]
parametrization for the exchange and correlation energy.
The energy functional of the whole cluster can be written
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as (Hartree atomic units are used throughout the paper):

E[ρ, {RI}] =

T [ρ(r)] +
1

2

∫
drρ(r)VH (r) +

∫
drρ(r)εxc[ρ(r)]

+
∑
j

∫
dr

∫
dr′ϕ∗j (r)Vtot(r, r

′)ϕj(r
′)

+
1

2

∑
i6=j

Z2

|Ri −Rj |
(8)

where VH(r) is the Hartree potential, εxc[ρ] is the exchan-
ge-correlation energy, Z is the pseudo-atomic valence and
ϕj(r) are the single-particles Kohn-Sham wave functions
which solve:

[
−

1

2
∇2 + VH(r) + Vxc(r) + V Ltot(r)

]
ϕk(r)

+

∫
dr′V NLtot (r, r′)ϕk(r′) = εkϕk(r) (9)

where

Vxc(r) ≡
δ

δρ(r)
[ρ(r)εxc(ρ(r))]. (10)

The last term on the right hand side of equation (8) is the
contribution of the point-like Coulomb interaction of the
nuclei. Our main approximation is to substitute Vtot(r, r

′)
with its spherical average. We do that by expanding the
ionic density into spherical harmonics as follows:

n(r) =
∑
lm

ñlm(r)Ylm(r̂). (11)

Following reference [3], we write the pseudo-potential of
an ion centered at R as:

vPS(r, r′,R) = vLPS(r,R) + vNLPS (r, r′,R) (12)

where the local part is

vLPS(r,R) =
∑
lm

Y ∗lm(R̂)Ylm(r̂) ṽLPS,lm(r,R) (13)

with

ṽLPS,lm(r,R) =

2π

∫ 1

−1

dy vBHScore

(√
r2 +R2 − 2rRy

)
Pl(y) (14)

and the non-local one

vNLPS (r, r′,R) =
∑

lm,l′m′,jk

Y ∗lm(r̂)Yl′m′(r̂
′)Yjk(R̂)

×ṽNLPS,lm,l′m′,jk(r, r′, R) (15)

with

ṽNLPS,lm,l′m′,jk(r, r′, R) =√
4π(2j + 1)(−1)m

′

(
l l′ j
m −m′ k

)
(2π)2

rr′R2

×
∑
µ

(−1)µ
(
l l′ j
µ −µ 0

)∑
λ

∫ r>

r<

dr′′∆vBHSλ (r′′)

× P̃lµ

(
r2 +R2 − r

′′2

2rR

)
P̃λµ

(
r2 −R2 − r

′′2

2Rr′′

)

× P̃lµ

(
r
′2+R2−r

′′2

2r′R

)
P̃λµ

(
r
′2−R2−r

′′2

2Rr′′

)
(16)

and

r< = max(|r −R|, |r′ −R|)

r> = min(r +R, r′ +R). (17)

We have also defined:

P̃lm(cos θ) =

√
(2l+ 1)(l −m)!

4π(l +m)!
Plm(cos θ) (18)

in terms of the associated Legendre polynomials
Plm(cos θ).
From equations (7, 11, 13–16) one obtains:

V Ltot(r) =

∫
dR

∑
lm,l′m′

ñlm(R) Ylm(R̂) Y ∗l′m′(R̂)

× Yl′m′(r̂) ṽ
L
PS,l′m′(r,R)

=
∑
lm

Ylm(r̂)

[∫ ∞
0

dR R2 ñlm(R) ṽLPS,lm(r,R)

]
=
∑
lm

Ylm(r̂) Ṽ Ltot,lm(r) (19)
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for the local part and

V NLtot (r, r′) =∫
dR

∑
lm,l′m′,l′′,m′′,jk

ñlm(R) Ylm(R̂) Y ∗l′m′(r̂)

×Yl′′m′′(r̂
′) Yjk(R̂) ṽNLPS,l′m′,l′′m′′,jk(r, r′, R)

=
∑

l′m′,l′′m′′

Yl′m′(r̂) Y
∗
l′′m′′(r̂

′)

×
∑
lm

∫ ∞
0

dR R2 ñlm(R) ṽNLPS,l′m′,l′′m′′,lm(r, r′, R)

=
∑

l′m′,l′′m′′

Yl′m′(r̂) Y
∗
l′′m′′(r̂

′) Ṽ NLtot,l′m′,l′′m′′(r, r
′) (20)

for the non-local part of the total ionic pseudo-potential.
As far as the local part is concerned, the SAPS scheme

amounts to taking just the monopole term (l = 0,m = 0)
in equation (19):

V Ltot(r) = Y00(r̂) Ṽ Ltot,00(r) +
∑
l6=0,m

Ylm(r̂) Ṽ Ltot,lm(r)

= V̄ LSAPS(r) +∆V Ltot(r). (21)

This is equivalent to considering the total potential as due
only to the monopole component of the ionic density:

n(r)=nSAPS(r)= ñ00(r)Y00(r̂)=
∑
I

δ(r−RI)

4πR2
I

· (22)

In order to use the same prescription also for the non-
local part of the interaction, we single out its component
arising from the monopole term of the ionic density; due
to the 3j-coefficients in equation (16), this requirement
rearranges equation (20) as:

V NLtot (r, r′) =
∑
lm

Ylm(r̂) Y ∗lm(r̂′) Ṽ NLtot,lm,lm(r, r′)

+
∑

l6=l′,m,m′

Ylm(r̂) Y ∗l′m′(r̂
′) Ṽ NLtot,lm,l′m′(r, r

′)

= V̄ NLSAPS(r, r′) +∆V NLtot (r, r′), (23)

and allows to use as zero-order approximation of the com-
plete potential Vtot(r, r

′) of equation (7) its monopole
part:

V̄SAPS(r, r′) =

∫
dR nSAPS(R) vPS(r, r′,R)

= V̄ LSAPS(r) + V̄ NLSAPS(r, r′); (24)

the remaining contributions in equations (21) and (23)
may eventually be treated by perturbation theory as in
reference [8]. Carrying out the SAPS scheme explicitly,
from equations (19) and (20) we obtain:

V̄ LSAPS(r) =
1

2

∑
I

∫ 1

−1

dy vBHScore

(√
r2 +R2

I − 2rRIy

)
,

(25)

(with y = cos(r̂,RI)) for the local part of the interaction
and

V̄ NLSAPS(r, r′) =
∑
lm

V̄ NLl (r, r′)Ylm(r̂)Y ∗lm(r̂′) (26)

with

V̄ NLl (r, r′) ≡ Ṽ NLtot,lm,lm(r, r′)

=
(2π)2

(2l+ 1)rr′

∑
I,λ,µ

1

R2
I

∫ r>

r<

dr′′∆vBHSλ (r′′)

× P̃lµ

(
r2 +R2

I − r
′′2

2rRI

)
P̃λµ

(
r2 −R2

I − r
′′2

2RIr′′

)

× P̃lµ

(
r
′2+R2

I−r
′′2

2r′RI

)
P̃λµ

(
r
′2−R2

I−r
′′2

2RIr′′

)
(27)

for the non-local one, respectively.
Due to the required spherical symmetry of the system

(implicit in Eq. (22)), one can decouple all the angular
momentum components and get one-dimensional integro-
differential Kohn-Sham equations for the reduced radial
wave function unl(r):

[
−

1

2

d2

dr2
+
l(l + 1)

2r2
+ VH(r) + Vxc(r) + V̄ LSAPS(r)

]
unl(r)

+

∫ ∞
0

dr′Γl(r, r
′)unl(r

′) = εnlunl(r), (28)

where

Γl(r, r
′) ≡ rV̄ NLl (r, r′)r′ (29)

is the symmetric kernel due to the non-local potential.
The set of equations (28) is solved self-consistently, with
the Hartree and exchange-correlation potentials defined in
terms of the electronic charge density:

ρ(r) = 2
∑
nl

(2l + 1)u2
nl(r)

4πr2
· (30)

2.2 TDLDA calculation

For the calculation of the dynamical properties (photo-
absorption cross-section, dynamical polarizability) we
use the time-dependent local density approximation
(TDLDA) [15], which allows to calculate the (linear)
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response of the electronic system to an external frequency-
dependent potential Vext(r, ω). This can be accomplished
by the calculation of the retarded density-density correla-
tion function obeying the following integral equation:

χ(r, r′;ω) = χ0(r, r′;ω)

+

∫
dr′′

∫
dr′′′χ0(r, r′′;ω)K(r′′, r′′′)χ(r′′′, r′;ω), (31)

where the integral kernel is the residual particle-hole in-
teraction:

K(r, r′) ≡
1

|r− r′|
+
δVxc

δρ(r)
δ(r− r′), (32)

and χ0(r, r′;ω) is the correlation function calculated in
the independent particle picture:

χ0(r, r′;ω) =
∑
iocc

ϕi(r)ϕ∗i (r
′)
∑
j

ϕj(r)ϕ∗j (r
′)

εi + ω − εj + iδ

+
∑
iocc

ϕ∗i (r)ϕi(r
′)
∑
j

ϕ∗j (r)ϕj(r
′)

εi−ω−εj+iδ
· (33)

As pointed out in reference [15], instead of computing the
whole spectrum of the system required by the explicit sum
over the single-particle states in equation (33), one can
resort to calculation of the Green’s function associated to
the Schrödinger-like equation:

(
−

1

2
∇2 + Veff (r)− ε

)
G(r, r′; ε)

+

∫
dr′′V NLtot (r, r′′)G(r′′, r′; ε) = δ(r− r′) (34)

where ε is a (complex) parameter and with

Veff (r) = VH(r) + Vxc(r) + V̄ Ltot(r). (35)

This procedure allows to skip the numerical-intensive ex-
plicit calculation of all the excited states (which are au-
tomatically incorporated in the calculation of the Green’s
function in the ground state potential, as it will be shown
below), therefore restricting the attention only on those
single-particle states which are occupied.

This result holds also for the integro-differential equa-
tion equation (28) as we now show: due to the real
and symmetric character of the non-local interaction
V NLtot (r, r′) (as can be deduced from Eq. (27)), the
single-particle eigenfunctions ϕj(r)’s constitutes an ortho-
normal basis set:

〈ϕj |ϕk〉 = δjk. (36)

Therefore we may search an expansion of the Green’s func-
tion in terms of this ortho-normal set {ϕj(r)} as:

G(r, r′; ε) =
∑
k

Ak(r′)ϕk(r). (37)

Substituting equation (37) into equation (34), one gets:

∑
k

Ak(r′)

(
−

1

2
∇2 + Veff (r)− ε

)
ϕk(r)

+
∑
k

Ak(r′)

∫
dr′′V NLtot (r, r′′)ϕk(r′′)=δ(r−r′). (38)

Recalling that the ϕk(r) are solutions of the eigenvalue
problem of equation (9), equation (38) becomes:

∑
k

Ak(r′)(εk − ε)ϕk(r) = δ(r− r′). (39)

Multiplying both sides of equation (39) by ϕ∗j (r) and in-
tegrating over r one finally obtains:

Aj(r
′) =

ϕ∗j (r
′)

εj − ε
· (40)

Therefore, as in the local case [15], it is possible to write
the Green’s function as:

G(r, r′; ε) =
∑
j

ϕ∗j (r
′)ϕj(r)

εj − ε
· (41)

Upon inserting equation (41) in equation (33) we get:

χ0(r, r′;ω) =
∑
iocc

ϕi(r)ϕ∗i (r
′)G(r, r′; εi + ω)

+
∑
iocc

ϕ∗i (r)ϕi(r
′)G∗(r, r′; εi − ω). (42)

It is worth recalling that, due to the spherical symmetry
of the problem, equations (31, 33, 34) are all diagonal
with respect to the angular momentum components, and
so they reduce to one-dimensional radial equations, one
for each l.

In our calculation the Green’s function is computed by
discretizing the corresponding radial equation on a linear
mesh, thus transforming it into a matrix equation. This is
then inverted by adding a small imaginary part (γ) to the
energy parameter in order to avoid the singularities at the
(real) single-particle eigenvalues. For typical calculations
we have used a mesh of 250 points extending from the
center of the cluster out to three times the cluster’s radius,
whereas a value of 50 meV for the γ parameter has been
used.

From the density-density correlation function all the
dynamical quantities may be computed in the usual man-
ner [15].
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To assess the accuracy of our TDLDA numerical pro-
cedure we have compared the integrated photoabsorption
cross-section σ(ω) with the optical f−sum rule modified
to account for non-locality:

∫ ∞
0

dωσ(ω) = C(N +∆N) (43)

where C = (2π2/c) a.u. and with ∆N = 0 in the local
case and

∆N =
2

3

∫ ∞
0

dr

∫ ∞
0

dr′
∑
nl

(2l + 1)unl(r)unl(r
′)

×
∑
l′

[
2rr′(2l′ + 1)

(
l 1 l′

0 0 0

)2

− δl′,l(r
2 + r

′2)

]
×Γl′(r, r

′) (44)

in the non-local one. In the present work, calculated
TDLDA cross-sections fulfill the f−sum rule typically to
better than 1 part in 103. Such value that we consider
accurate enough can be further improved by reducing the
mesh spacing (which affects the matrix inversion proce-
dure to calculate the Green’s function) at the cost, of
course, of an increased computational overload.

3 Results and discussion

We have applied the above formalism to the calculation
of the dipolar optical response of alkali metals, which con-
stitute a typical benchmark to test the reliability of such
calculations. We have focused our study on either Na or
Li clusters in order to elucidate the inherent contribution
of the non-locality, which is known to play a minor role
in Na [3,8,16], whereas it is more relevant in the Li case
[3,11,12,16–18]. The size of the clusters has been chosen
to investigate to what extent one can push the approxi-
mation of radial averaging: for large clusters, in fact, this
approximation works fairly well [12], as we will show below
for Na138 and Li138, but in the case of clusters made of a
few atoms, it is well known that deviations from “spheric-
ity” are relevant [5,19,20], so the applicability of any kind
of spherical average (uniform or radial) of the electron-
ion interaction is still under debate. Therefore, we focused
our attention on clusters made up of 8 (closed-shell struc-
tures) and 6 (open-shell) atoms, for which reliable ab initio
calculations [6,19–26] and experimental photoabsorption
cross-section are available [22,23,27–30].

3.1 Na2, Li2

As a preliminary test, we have calculated the ground-state
properties of the Na2 and Li2 dimers: the equilibrium dis-
tance d, the vibrational wave-number ν and the dissocia-
tion energy De are reported in Table 1 together with the

experimental results of references [31,32] and the ab initio
calculations of references [5,33].

Although the SAPS approximation is expected to be
reliable mostly for spherically symmetric systems, we see
that for both Na and Li a good agreement has been found
between all the spectroscopic quantities considered and
the corresponding experimental results; in the case of the
vibrational frequency ν, NL-SAPS results are overesti-
mated by 8% for Na and underestimated by 3% for Li,
respectively: in any case, a perfect agreement with fully
3D ab initio results of references [5,33] is obtained, there-
fore assessing the reliability of our method. We note that
in reference [13] for Li2 the calculated dissociation energy
isDe = 0.22 eV which is well below the experimental value
of Dexp

e = 1.06 eV (even if the calculated equilibrium dis-
tance is in good agreement with the experimental result).
This suggests that complete inclusion of the p-nonlocality
as in our approach instead of the single s-nonlocality used
in references [12,13] is of relevant importance. Moreover,
these results clearly demonstrate that the SAPS approx-
imation, when combined with the non-local approach, is
less severe than one could think. We now further investi-
gate the reliability of our NL-SAPS in the case of closed-
and open-shell alkali clusters.

3.2 Na8

The starting points of all our calculations are the struc-
tures obtained with ab initio geometry optimizations of CI
and MD type [19,20,24]. We did not repeat full structural
optimization: we kept the symmetry of the ionic arrange-
ment, while allowing the overall structure to expand or
shrink with respect to the center of mass of the cluster by
scaling the coordinates and finding a minimum of the to-
tal energy in this restricted configuration space. This ends
up in a redefinition of the cluster volume, which in turns
implies a different delocalization volume for the valence
electrons with respect to either the simple jellium (JM) or
the uniform averaged pseudo-jellium (UAPS) models.

Of course closed-shell structures are expected to be
quite nicely represented by calculations involving spheri-
cally symmetric averages of the ionic potentials. Therefore
our first aim is to compare the uniform average of refer-
ence [3] with our radial average in Na8, in order to better
elucidate the effect of the ionic structure.

We have adopted the Td and D4d space groups to rep-
resent the ground state geometries in the NL-SAPS calcu-
lations, while for the UAPS we have minimized the energy
by varying the radius over which the uniform average had
to be performed.

We stress the fact that our primary aim was the com-
parison between the two approximation schemes: the non-
local uniform average of UAPS and our non-local version
of the SAPS. Therefore we did not put emphasis on the
systematic search of the absolute minimum in the total
energy, so we have not taken into account other possible
structures to represent the ground state geometry of the
cluster (as, for example, the D2d space group).
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Fig. 1. Comparison among the self-consistent effective poten-
tials for Na8 in the Td arrangement in jellium (JM), optimized
UAPS and our NL-SAPS.

It is worth noting that in its original formulation [3] the
UAPS does not allow energy optimization because it de-
fines the radius of the cluster in terms of the bulk Wigner
radius. So in the following we compare our results also
with this non-optimized version of UAPS (NO-UAPS).
Another remark has to be done: in the case of UAPS, the
calculation of the background ionic energy as the energy
of a uniformly, positively charged sphere (as in JM) often
leads to positive ground state energies (as in the case of Li
clusters): so to better compare UAPS and NL-SAPS re-
sults also for the optimization of the UAPS structure we
have used the discrete arrangements of Td and D4d space
groups for the evaluation of the ionic potential energy.

With regard to the total energy minimization, there is
a good agreement between our results and ab initio calcu-
lations: for the D4d structure our minimum coincides with
the one of CI calculations of reference [19], with a mean
nearest-neighbor distance (MNND) of 0.345 nm which is
lower than the bulk (b.c.c.) value 0.366 nm and also for the
Td case a MNND of 0.345 nm is found in agreement with
MD and CI calculations. Nevertheless, at variance with
CI calculations, our D4d ground state geometry resulted
to have lower total energy than the Td one.

In Figure 1 we compare the effective potentials in the
case of Jellium (JM), uniform average (UAPS) and our
non-local SAPS for the Td structure. The two curves for
UAPS and NL-SAPS are the potentials which act on the
1s and 1p electrons and are obtained by building a “local”
version [3] of the otherwise non-local potentials used in the
Kohn-Sham equation, as follows:

Veff,nl(r) = VH(r) + Vxc(r) + V̄ LSAPS(r)

+

∫
dr′Γl(r, r

′)unl(r
′)

unl(r)
· (45)

From this figure, one can see that while for Na non-local
effects are not so pronounced for the UAPS case, the ef-
fective potentials being substantially independent on the
orbital (see also Ref. [3]), in the NL-SAPS case the effects
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Fig. 2. Comparison among the electronic densities for Na8 in
the Td arrangement in jellium (JM), optimized UAPS and our
NL-SAPS.

of the core electrons become more appreciable. It is also
evident that in the case of UAPS, pseudo-potentials lead
to a reduced binding of the valence electrons with respect
to the JM and therefore to a larger electronic spill-out.
This, in turns, affects the optical response by increasing
the dipole polarizability. A more complex behavior has
been obtained for the non-local SAPS. In this case, even
if the tail of the potentials outside the cluster radius agrees
with that of the UAPS (which is lower than the JM one),
inside the cluster the potentials mimic the “two-shells”
structure of the ionic arrangement in the Td space group,
visible in the two “peaks” near 4 a.u. and 7 a.u. Looking
at the electronic densities (Fig. 2) one can see that non-
local SAPS decreases a little bit the electronic binding
with respect to UAPS and JM: this enhancement in the
electronic spill-out outside the cluster radius implies as a
by-product an increased polarizability in better agreement
with experimental data. The result on the electronic den-
sity deserves some further comments: we can in fact test
the reliability of our averaging procedure by comparing
our data with those obtained with ab initio MD calcu-
lations by reference [20], in which a spherical average of
the fully three-dimensional electronic density is reported.
A good quantitative agreement between those results and
ours NL-SAPS can be observed (and even more precise in
the case of Na6, as it will be shown below), which can not
be obtained neither in the JM nor in the UAPS model,
even in its non-local extension. This is a very important
point because, as well known in DFT, it is the electronic
density that triggers the whole physics of the system.

The TDLDA photoabsorption cross-section of Na8 is
plotted in Figure 3 for the Td space group and compared
with that of UAPS, with a lorentzian convolution of ampli-
tude γ = 0.05 eV. A better agreement with experimental
results of the position of the main resonance is found for
the NL-SAPS, similarly to reference [16]. This spectrum
also shows an increased Landau damping in the NL-SAPS,
which redistributes part of the oscillator strengths to dif-
ferent single particle transitions.
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Fig. 3. Photoabsorption cross-section for Na8 in the Td ar-
rangement in the optimized UAPS and our NL-SAPS. The
vertical arrow is located at the main experimental resonance.

The results of both static and dynamic calculations are
summarized in Table 2, where the total energy, the clus-
ter radius (defined with respect to the center of mass), the
electronic spill-out, the RMS value of the electronic radius
and the main peak in the photoresponse cross-section are
reported for the Td, theD4d space groups for the NL-SAPS
and UAPS case, respectively. Just for comparison also the
analogous values in the non-optimized UAPS (NO-UAPS)
and in the jellium (JM) case are included in the table, to-
gether with the experimental value of the optical response
(OR) peak. From these data, as a first results, we conclude
that the use of SAPS with realistic non-local pseudopoten-
tials improves the quantitative agreement between theory
and experiment with respect not only to the JM results,
but also to the UAPS ones (optimized or not). It is worth
noting that our calculation gives results which are very
similar to the ones of reference [8], which included in a
perturbative way the effect of the non-spherical part of the
ionic potential, but using a semi-empirical (local) Heine-
Abarenkov pseudo-potential. They obtained for instance
a plasma resonance at 2.58 eV and 2.48 eV for the D4d

and Td structure, respectively.

3.3 Li8

A set of calculations similar to the ones for Na8 have been
carried out on Li8. Also in this case we have minimized
the total energy by rescaling two already optimized struc-
tures: the Td structure resulting from CI calculations [24]
and the structure obtained with ab initio MD [33] and
LDA [25] calculations, which consists of a centered trig-
onal prism with an atom capping one of the rectangular
faces (CCTP ).

The energy minimum in our NL-SAPS calculations is
obtained for the CCTP structure, with a MNND of 0.27
nm in very good agreement with the value of reference
[25], whereas the Td structure gives a MNND of 0.33 nm,
which is larger than the CI one (0.31 nm) and the bulk
(b.c.c.) one (0.302 nm).
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Fig. 4. Comparison among the self-consistent effective poten-
tials for Li8 in the Td arrangement in jellium (JM), optimized
UAPS and our NL-SAPS.
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Fig. 5. Comparison among the electronic densities for Li8 in
the Td arrangement in jellium (JM), optimized UAPS and our
NL-SAPS.

The comparison of the effective potentials obtained for
JM, UAPS and non-local SAPS is reported in Figure 4
for the Td space group: the inherent non-local character
of the potentials is now evident not only for the NL-SAPS
but also for the UAPS case, and it is further enhanced
with respect to the Na8 case, emphasizing the importance
of including non-locality in such systems. In Figure 5 the
electronic densities are compared for the three cases ex-
amined. Also in this case there is a monotonic enhance-
ment of the electronic spill-out and RMS electronic radius
on going from JM, through UAPS, to NL-SAPS, which
explains the increased red-shift of the NL-SAPS photoab-
sorption cross-section resonance (reported in Fig. 6) with
respect to the other two cases, in better agreement with
experimental data. With regard to the optical response
calculations, we report the results in Table 3, whose en-
tries are the same as in Table 2. An improvement with
respect either to JM or UAPS is again obtained, even if
ab initio calculations of reference [25] give of course better
results than ours, predicting an energy of 2.45 eV for the
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Fig. 6. Photoabsorption cross-section for Li8 in the Td arrange-
ment in the optimized UAPS and our NL-SAPS. The vertical
arrow is located at the main experimental resonance.
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Fig. 7. Comparison among the self-consistent effective poten-
tials for Na6 in the C5v arrangement in jellium (JM), optimized
UAPS and our NL-SAPS.

Mie resonance, against an experimental results of 2.5 eV,
therefore assessing the relevance of the precise ionic den-
sity.

3.4 Na6

Since our scheme is found to produce a substantial im-
provement in the quantitative agreement between calcu-
lated and experimental results for the optical response of
closed-shell systems, we have tested our approximation
in the case of open-shell systems like the alkali hexamers,
which up to now were not studied within the SAPS model.

The first open-shell structure investigated is Na6 in the
C5v structure obtained by MD calculations of references
[20,21]: Figure 7 gives a comparison of the self-consistent
effective potentials for JM, UAPS and NL-SAPS.

The results on the electronic density are reported
in Figure 8: it is worth noting the good quantitative
agreement of our electronic density with the spherically

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
r [a.u.]

0.000

0.002

0.004

0.006

0.008

ρ(
r)

  [
e/

a.
u.

3 ]

JM
UAPS
NL−SAPS

Na6

Fig. 8. Comparison among the electronic densities for Na6 in
the C5v arrangement in jellium (JM), optimized UAPS and our
NL-SAPS.
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Fig. 9. Photoabsorption cross-section for Na6 in the C5v ar-
rangement in the optimized UAPS and our NL-SAPS. The
vertical arrow is located at the main experimental resonance.

averaged one of reference [20], obtained from ab initio
MD calculations. All the relevant calculated static and
dynamic properties are summarized in Table 4.

With regard to the photoabsorption cross-section of
Figure 9, we note that while NL-SAPS is able to give a
better quantitative agreement than both JM and UAPS
in the position of the collective dipole resonance around
2.1 eV, it fails to reproduce the finer details of the exper-
imental spectra [22]. A comparison with local pseudopo-
tential calculation of reference [8] shows that the inclu-
sion (at least perturbatively) of the non-spherical part of
the background potential is mandatory in such structure
to recover the experimental fine structures. The fact that
our NL-SAPS formulation is not so satisfactory in “cor-
recting” the local SAPS predictions, as compared to the
Li case, corroborates the conclusion that non-local correc-
tions in Na seems to play a minor role.
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Fig. 10. Comparison among the self-consistent effective poten-
tials for Li6 in the C2v arrangement in jellium (JM), optimized
UAPS and our NL-SAPS.
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Fig. 11. Comparison among the electronic densities for Li6
in the C2v arrangement in jellium (JM), optimized UAPS and
our NL-SAPS.

3.5 Li6

For Li6 we have compared two structures obtained by CI
calculations [30]: the pentagonal pyramid (space group
C5v), which, due to its almost 2D character, shows a large
deviation from spherical symmetry, and the nonplanar
tripyramidal C2v geometry, the last structure being “more
three-dimensional” than the C5v case.

In the energy minimization, we obtained for the C2v

structure (which has the lowest total energy, in agreement
with Ref. [30]) an “expansion” of about 4% with respect
to the CI result, whereas for the C5v we got a contraction
of about 5%. The effective potentials are reported for JM,
UAPS and NL-SAPS in Figure 10 for the C2v case. It is
worth noting the remarkable non-locality in the NL-SAPS
case. The electronic density of the NL-SAPS is compared
in Figure 11 with those of JM and UAPS. As in the case
of Li8 there are not available averaged ab initio calcu-
lated density to check the reliability of our calculation.
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Fig. 12. Photoabsorption cross-section for Li6 in the C2v ar-
rangement in the optimized UAPS and our NL-SAPS. The
vertical arrow is located at the main experimental resonance.

The ground state data, together with the optical response
peak are reported in Table 5.

Even if the deviation from sphericity is remarkable,
also in this case we have a better quantitative agreement
in the position of the main OR peak at 2.5 eV with re-
spect to JM and UAPS, as it can be seen from Figure 12.
Of course, the radial averaging procedure makes hard to
grasp all the minor features in the experimental spectra
(like the weak peak at 1.8 eV, which is only approximated
by our calculated features around 1.5–1.6 eV): so we un-
derline the fact that in our case we have not the possibility
to discriminate between different isomers solely from the
point of view of a simple optical response analysis, as can
be done in the full ab initio CI calculation of references
[24,30], who obtained for the C5v structure a single in-
tense peak located at 2.07 eV, therefore suggesting that
the C2v geometry (whose spectra agrees quantitatively in
their calculations with the experimental one) is the most
stable one.

3.6 Na138, Li138

In order to demonstrate the reliability of our method also
with “large” systems, we have performed NL-SAPS calcu-
lations on clusters composed of 138 atoms arranged in the
b.c.c. lattice sites as in the bulk. Structural minimization
gives a 3% contraction for Na and an expansion of 8% for
Li as compared to their respective bulk lattice parame-
ters. The TDLDA optical response shows a main peak at
2.85 eV and 3.05 eV for Na138 and Li138, respectively [34],
which are in good agreement with the experimental val-
ues [35,36]. This supports our initial statement that the
non-local SAPS scheme appears as a very effective tool
for reliable calculations of the optical properties of large
and small alkali clusters at a computer cost comparable
to the simple jellium one, but with an enhanced degree of
accuracy.
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Table 1. Equilibrium distance d, vibrational wave-number ν and dissociation energy De of Na2 and Li2 calculated within
NL-SAPS approach.

Na2 Li2
NL-SAPS ab initio(*) exp.(**) NL-SAPS ab initio(†) exp.(‡)

d (a.u.) 5.86 5.48 5.818 5.46 5.29 5.05
ν (cm−1) 171 173 159.1 341 341 351
De (eV) 0.75 0.91 0.747 0.96 1.03 1.06

(*) Ref. [5], (**) Ref. [31]; (†) Ref. [33], (‡) Ref. [32].

Table 2. Comparison between non-local spherical averaged pseudo-jellium (NL-SAPS), uniformly averaged pseudo-jellium
(UAPS) and Jellium (JM) static and dynamic properties for Na8.

Na8 NL-SAPS UAPS NO-UAPS JM
Td D4d Td D4d exp.(*)

Emin [Ry] −3.336 −3.393 −3.767 −5.344 −0.169 −1.152 -
Rmin [a.u.] 6.76 5.39 6.75 5.56 7.86 7.86 -
Spill-out 2.97 4.93 2.70 3.40 2.19 1.43 -
RMS radius [a.u.] 6.57 6.56 6.28 5.59 6.98 6.42 -
OR-peak [eV] 2.41 2.62 2.62 3.15 2.25 2.80 (2.52)

(*) Experimental result taken from [27].

Table 3. Comparison between non-local spherical averaged pseudo-jellium (NL-SAPS), uniformly averaged pseudo-jellium
(UAPS) and Jellium (JM) static and dynamic properties for Li8.

Li8 NL-SAPS UAPS NO-UAPS JM
Td CCTP Td CCTP exp.(*)

Emin [Ry] −3.490 −3.607 −3.971 −4.398 0.305 −1.097 -
Rmin [a.u.] 6.15 5.48 6.09 5.78 6.50 6.50 -
Spill-out 3.03 3.47 2.78 2.93 2.60 1.65 -
RMS radius [a.u.] 6.06 5.73 5.76 5.57 6.02 5.44 -
OR-peak [eV] 2.64 2.73 2.90 3.05 2.70 3.50 (2.50)

(*) Experimental result taken from [23].

Table 4. Comparison between non-local spherical averaged pseudo-jellium (NL-SAPS), uniformly averaged pseudo-jellium
(UAPS) and Jellium (JM) static and dynamic properties for Na6.

Na6 NL-SAPS UAPS NO-UAPS JM
C5v C5v exp.(*)

Emin [Ry] −2.291 −3.021 −0.071 −0.771 -
Rmin [a.u.] 5.56 5.75 7.14 7.14 -
Spill-out 3.11 2.50 1.88 1.29 -
RMS radius [a.u.] 6.30 5.78 6.58 5.96 -
OR-peak [eV] 2.36 2.78 2.22 2.70 (2.08)

(*) Experimental result taken from [22].

Table 5. Comparison between non-local spherical averaged pseudo-jellium (NL-SAPS), uniformly averaged pseudo-jellium
(UAPS) and Jellium (JM) static and dynamic properties for Li6.

Li6 NL-SAPS UAPS NO-UAPS JM
C2v C5v C2v C5v exp.(*)

Emin [Ry] −2.496 −2.377 −2.623 −3.078 0.286 −0.699 -
Rmin [a.u.] 5.80 5.05 5.83 5.31 5.90 5.90 -
Spill-out 2.29 2.97 2.25 2.46 2.22 1.47 -
RMS radius [a.u.] 5.77 5.69 5.67 5.35 5.72 5.07 -
OR-peak [eV] 2.54 2.62 2.75 3.02 2.72 3.35 (2.50)

(*) Experimental result taken from [30].
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4 Conclusions

In this paper we have presented analytic calculation to
include in a complete way the non-local contribution to
the electron-ion interaction arising from norm-conserving
pseudo-potentials in the spherical averaged jellium model
(SAPS). We have applied this model to the calculation of
the dipole optical response of alkali metals hexamers and
octamers and we have compared our approach with the
uniform average jellium model (UAPS) in order to eluci-
date the relevance of the ionic structure. Our results show
that an increased reliability of the SAPS approximation
can be achieved when norm-conserving ab initio pseudo-
potentials are used, due to the non-local effect of the core
electrons, which results in a better quantitative agreement
with experimental data. With respect to the simple uni-
form averaged UAPS model we have obtained systematic
improvements when the “ionic granularity” is taken into
account even in the approximate way implied by the SAPS
scheme. Indeed, even for remarkably non-spherical, open-
shell systems, our formalism is able to give reasonably
good quantitative results: nevertheless in order to obtain
a greater accuracy also in the reproduction of the minor
features of the optical response a more precise account
for the actual ionic distribution (at least in a perturbative
way) is advisable. In conclusion the non-local SAPS model
also due to its modest computer cost (slightly higher than
the simple jellium one) demonstrated to be a viable route
to the calculation of static and dynamic properties of clus-
ters in a large size range bridging the gap between ab initio
and jellium-type calculations.
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